МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ИФИМ VRИН ЄТАИ)

Одобрено на заседании Ученого совета ИАТЭ НИЯУ МИФИ протокол от 30.10.2023 г. №23.10

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Ядерная физика

название дисциплины

для студентов направления подготовки

06.03.01 Биология

Форма обучения: очная

г. Обнинск 2023 г.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель изучения дисциплины:

• сообщение студентам сведений об основных свойствах атомных ядер; квантовых характеристиках ядерных состояний; электромагнитных переходах в ядрах, нуклон-нуклонных взаимодействиях и свойствах ядерных сил; ядерных моделях и ядерных реакциях; нейтронных эффективных сечениях в объеме необходимом для освоения общепрофессиональных дисциплин и решения профессиональных задач.

Задачи изучения дисциплины:

- рассмотреть деление ядер;
- дать информацию по взаимодействию ионизирующего излучения с веществом;
 - рассмотреть типы ядерных реакций

2. Место дисциплины в структуре ОП бакалавриата

Дисциплина реализуется в рамках части, формируемой участниками образовательных отношений.

Для освоения дисциплины необходимы компетенции, сформированные в рамках изучения следующих дисциплин и/или практик: Химия, Математика, Физика.

Дисциплины и/или практики, для которых освоение данной дисциплины необходимо как предшествующее: Инструментальные методы анализа радиационного и химического загрязнения, Радиобиология, Биологические подходы к нормированию радиационного и химического загрязнения.

Дисциплина изучается на 2 курсе в 3 семестре.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения ОП бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине:

Коды компетенций	Результаты освоения ООП	Перечень планируемых результатов	
	Содержание компетенций*	обучения по дисциплине**	
ПК-1	способность обосновывать	3-ПК-1 Знать: современные биофизические,	
	научное исследование, выбирать	физико-химические и медико-	
	объект и использовать	биологические методы исследования,	
	современные биофизические,	методы математического анализа и	
	физико-химические и медико-	статистической обработки полученных	
	биологические методы	результатов	
	исследования, применять методы	У-ПК-1 – Уметь: обосновывать цель и	
	математического анализа,	задачи исследования в своей	
	методы статистической	профессиональной области, выбирать	

		, , , , , , , , , , , , , , , , , , ,
	обработки результатов	объекты и методы исследований,
	наблюдений, методы	обосновывать план экспериментальных
	планирования эксперимента	исследований
		В-ПК-1 – Владеть: навыками использования
		современного оборудования, методами
		математической статистики и
		представления результатов исследования
ПК-3.1	Способность планировать и	3-ПК-3.1 Знать: виды радиоактивных
	реализовывать	излучений и их взаимодействия с
	профессиональные мероприятия	веществом; механизм биологического
	направленные на мониторинг,	действия ионизирующих излучений;
	контроль качества на	течение, формы и критерии диагностики
	предприятиях, осуществляющих	лучевой болезни; - знать принципы
	деятельность в области атомной	использования, радионуклидов, меченных
	энергетики	ими соединений и источников
		ионизирующих излучений - знать типы
		ядерных превращений, основы
		радиационной безопасности; токсикологию
		наиболее опасных радиоактивных изотопов
		У-ПК-3.1 Уметь: пользоваться всеми
		приборами и материалами, необходимыми
		для проведения радиологических
		исследований - уметь определить дозу и
		мощность дозы облучения с помощью
		дозиметров и расчётным методом - уметь
		излагать результаты экспериментальной
		работы в виде докладов и презентаций
		В-ПК-3.1 Владеть: навыками подготовки к
		работе и использования радиометров и
		дозиметров; использования средств
		индивидуальной защиты при работе с
		радиоактивными веществами, - владеть
		принципами оформления отчетов
		эксперимента
	1	1 · · ·

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Создание условий,	Использование воспитательного
воспитания	обеспечивающих	потенциала учебных дисциплин
Профессиональное и	формирование	Использование воспитательного
трудовое воспитание	исследовательского и	потенциала дисциплин "Научно-
	критического мышления,	исследовательская работа", "Методы
	культуры умственного	и методология биологических
	труда (В16)	исследований", "Концепции
		биологического образования" для
		формирования навыков владения
		эвристическими методами поиска и
		выбора технических решений в
		условиях неопределенности через
		специальные задания, организацию
		самостоятельной работы
		обучающихся.
Профессиональное	формирование научного	1.Использование воспитательного
воспитание	мировоззрения, культуры	потенциала дисциплин «Научно-
	поиска нестандартных	исследовательская работа» для:

научно-технических	- формирования понимания основных
решений, критического	принципов и способов научного
отношения к	познания мира, развития
исследованиям	исследовательских качеств
лженаучного толка (В19)	студентов посредством их
	вовлечения в исследовательские
	проекты по областям научных
	исследований.
	2.Использование воспитательного
	потенциала дисциплин "Философия",
	"Введение в специальность",
	"Научно-исследовательская работа",
	для:
	- формирования способности
	отделять настоящие научные
	исследования от лженаучных
	посредством проведения со
	студентами занятий и регулярных
	бесед;
	- формирования критического
	мышления, умения рассматривать
	различные исследования с
	экспертной позиции посредством
	обсуждения со студентами
	современных исследований,
	исторических предпосылок
	появления тех или иных открытий и
	теорий.

5. ОБЪЕМ ДИСЦИПЛИНЫ В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

Общая трудоемкость (объем) дисциплины составляет 3 зачетных единицы (з.е.), 108 академических часов.

Объём дисциплины по видам учебных занятий (в часах):

Вид работы	Количество часов на вид работы:
Контактная работа обучающихся с преподавателем	
Аудиторные занятия (всего)	48
В том числе:	
лекции	16
практические занятия (из них в форме практической подготовки)	32
лабораторные занятия	
(из них в форме практической подготовки)	
Промежуточная аттестация	
В том числе:	
зачет	3

зачет с оценкой	
экзамен	
Самостоятельная работа обучающихся	
Самостоятельная работа обучающихся	60
Всего (часы):	108
Всего (зачетные единицы):	3

6. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ

6.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№ п/п	Наименование раздела /темы дисциплины	Общая трудоём- кость всего (в часах)	Виды учебных занятий, включая самостоятельную работу обучающихся и трудоемкость (в часах)			Формы текущего контроля успеваемости	
			Аудит	горные	учебны	е занятия	
			Лек	Пр	Лаб	CPO	
1.	Атомное ядро	72	8	28		36	
1.1.	Основные характеристики атомных ядер		1	7		6	Контрольная работа, решение задач
1.2.	Радиоактивный распад		2	6		6	Решение задач
1.3.	Альфа-распад		1	5		6	Решение задач
1.4.	Бета-распад		1	5		6	Решение задач
1.5.	Гамма-излучение ядер		2	5		6	Решение задач
1.6.	Экзотические виды радиоактивного распада		1	0		6	Коллоквиум, рефераты
2.	Ядерные взаимодействия	36	8	4		24	
2.1.	Общие сведения о ядерных взаимодействиях		3	2		6	Контрольная работа
2.2.	Фотоядерные взаимодействия		2	0		6	Коллоквиум
2.3.	Деление атомных ядер		2	0		6	Решение задач
2.4.	Активация материалов		1	2		6	Рефераты
	Всего по дисциплине	108	16	32	0	60	

Прим.: Лек - лекции, Пр - практические занятия / семинары, Лаб - лабораторные занятия, CPO - самостоятельная работа обучающихся

6.2. Содержание дисциплины, структурированное по разделам (темам)

Лекционный курс

	Наименование	Содержание
№	раздела /темы	Содержиние
5 1-	дисциплины	
1.	Атомное ядро	
1.1.	Основные	Состав, структура, обозначения ядер. Размеры и
1.1.	характеристики	форма ядер. Массовое число и заряд.
	атомных ядер	Характеристики нейтронов и протонов. Масса и
	атомных ядер	энергия связи. Виды энергии связи. Энергия связи
		всех нуклонов. Удельная энергия связи. Энергии
		связи отдельных нуклонов. Формула Вайцзеккера и
		ее анализ. Другие формулы для масс ядер. Дефект
		массы. Выражение энергий связи и дефекта массы
		через декременты массы. Условия устойчивости
		ядер. Стабильные и нестабильные нуклиды.
		Таблица нуклидов и ее основные особенности.
		Энергетические состояния ядер и их
		характеристики. Момент количества движения
		(спин) ядра. Магнитный момент ядра.
		Электрический квадрупольный момент ядра.
		Изобарический спин. Четность.
1.2.	Радиоактивный	Открытие радиоактивного распада. Виды
	распад	радиоактивного распада. Основной закон
		радиоактивного распада. Константа распада,
		период полураспада, среднее время жизни ядер и
		связь между ними. Активность. Превращения
		элементов при радиоактивном распаде. Правило
		сдвига Фаянса и Содди. Цепочки последовательных
		распадов. Радиоактивные семейства.
		Количественное описание изменения числа ядер
		каждого члена цепочки во времени. Анализ цепочки
		из двух радиоактивных нуклидов. Радиоактивное
		равновесие.
1.3.	Альфа-распад	Природа альфа-частиц. Превращения ядер при
		альфа- распаде. Энергия альфа - распада. Распре-
		деление энергии между альфа-частицей и ядром
		отдачи. Условие устойчивости по отношению к
		альфа-распаду. Области альфа-активных ядер.
		Взаимодействие альфа-частиц с веществом. Энергии
		альфа - распада различных ядер. Периоды
		полураспада. Закон Гейгера-Неттола. Связь между
		энергиями альфа - распада и массовыми числами
		ядер. Кулоновский барьер и энергии альфа-частиц.
		Энергетические спектры альфа-частиц. Основы

		теории альфа - распада.
1.4.	Бета-распад	Основные свойства бета-частиц. Превращения ядер
		при бета-распаде. Энергия бета-распада. Условия
		устойчивости ядер по отношению к бета-распаду.
		Области бета-нестабильных ядер. Вылет нуклонов
		при бета-распаде. Взаимодействие бета-частиц с
		веществом. Значения энергий бета-распада.
		Периоды полураспада бета-активных ядер. Бета-
		распад свободных нейтронов. Энергетические
		спектры бета-частиц. Изменение спинов ядер при
		бета-распаде. Нейтрино. Правила отбора для
		разрешенных бета - переходов. Запрещенные бета -
		переходы. Несохранение четности при бета-распаде.
1.5.	Гамма-излучение	Гамма - кванты (фотоны). Область гамма-излучения
		на шкале длин электромагнитных волн. Ядерные
		процессы, при которых возникают гамма - кванты
		Энергетические спектры гамма - квантов.
		Взаимодействие гамма - квантов с веществом.
		Понятие мультипольности электромагнитного
		излучения. Правила отбора. Примеры использования
		правил отбора. Внутренняя конверсия
		электромагнитных переходов. Механизм
		внутренней конверсии. Условия возможности
		внутренней конверсии. Коэффициенты внутренней
		конверсии. Внутренняя конверсия при 0 - 0
		переходах. Ядерная изомерия. Эффект Мессбауэра.
1.6.	Экзотические виды	Протонная радиоактивность. Двухпротонная
	радиоактивного	радиоактивность. Нейтронная радиоактивность.
2	распада	Кластерная радиоактивность.
2.	Ядерные взаимодейс	
2.1.	Общие сведения о	Разновидности ядерных взаимодействий. Запись
	ядерных	ядерных реакций. Классификация ядерных реакций.
	взаимодействиях	Законы сохранения при ядерных взаимодействиях.
		Основные характеристики ядерных реакций. Выход. Эффективное сечение. Дифференциальные сечения.
		Угловые и энергетические распределения
		вторичных частиц. Энергия реакции.
		Экзоэнергетические и эндоэнергетические реакции.
		Пороговая энергия. Зависимость энергии
		вторичных частиц от угла вылета. Диаграмма
		импульсов. Составное ядро. Ядерные реакции под
		действием заряженных частиц. Нейтронные
		реакции.
2.2.	Фотоядерные	Общие сведения о фотоядерных взаимодействиях.
	взаимодействия	Фотоядерные реакции и рассеяние фотонов ядрами.
L		1 , 1 1 , L L L

		Открытие первой фотоядерной реакции. Типы		
		фотоядерных реакций. Энергия реакции. Пороговая		
		энергия. Экспериментальные методы исследований		
		фотоядерных взаимодействий. Источники фотонов:		
		радиоактивные элементы, ускорители протонов и		
		электронов, ядерные реакторы. Фоторасщепление		
		дейтрона. Прямой ядерный фотоэффект.		
		Гигантский дипольный резонанс (ГДР).		
2.3.	Деление атомных	Открытие процесса деления ядер. Механизм		
	ядер	процесса деления. Спонтанное деление.		
		Освобождение энергии при делении. Эффективные		
		сечения деления. Осколки деления. Вторичные		
		нейтроны деления. Мгновенное гамма-излучение		
		при делении.		
2.4.	Активация	Открытие искусственной радиоактивности. Методы		
	материалов	получения искусственных радионуклидов.		
		Активация. Изменения при активации активности		
		образцов во времени.		

Практические/семинарские занятия

Наименование	Содержание	
раздела /темы		
дисциплины		
Атомное ядро		
Основные	Размеры, заряды, массы и энергии ядер.	
характеристики		
атомных ядер		
Радиоактивный	Основные закономерности радиоактивного распада.	
распад		
Альфа-распад	Альфа-распад.	
Бета-распад	Бета-распад	
Гамма-излучение	Гамма-излучение ядер	
ядер		
Ядерные взаимодействия		
Общие сведения о	Энергетические характеристики ядерных реакций.	
ядерных	Пороговая энергия. Зависимость энергии	
взаимодействиях	иях вторичных частиц от угла вылета. Диаграмма	
	импульсов. Выход реакции. Эффективное сечение.	
Активация	Активация вещества при различных ядерных	
материалов	реакциях.	
	раздела / темы дисциплины Атомное ядро Основные характеристики атомных ядер Радиоактивный распад Альфа-распад Бета-распад Гамма-излучение ядер Ядерные взаимодейст Общие сведения о ядерных взаимодействиях	

Практические/семинарские занятия

№	Наименование раздела /темы дисциплины	Название лабораторной работы
1.	Атомное ядро	
1.1.	Основные	Изучение статистических распределений.

	характеристики атомных ядер	
1.2.	Радиоактивный распад	Исследование искусственной радиоактивности.
1.3.	Альфа-распад	Изучение распределений пробегов альфа – частиц и определение энергии альфа – частиц.
1.4.	Бета-распад	Изучение поглощения бета — частиц в веществе и определение максимальной энергии бета — спектра.
1.5.	Гамма-излучение ядер	Исследование поглощения гамма – излучения в веществе.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- 1. Методические указания по подготовке и выполнению лабораторных работ по дисциплине «Ядерная физика», утвержденные кафедрой ядерной физики, протокол № 2 от 25.09.2014 г.;
 - 2. презентации курса;
 - 3. интернет источники.

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

8.1. Связь между формируемыми компетенциями и формами контроля их освоения

№ п/п	1 10 1	Код контролируемой	Наименование	
	(темы) дисциплины (результаты	· · · · · · · · · · · · · · · · · · ·	оценочного средства	
	по разделам)	и ее формулировка		
	Текущ	ий контроль, 3 семестр		
1.	Атомное ядро	ПК-1 — способность обосновывать научное исследование, выбирать объект и использовать современные биофизические, физико-химические и медикобиологические методы исследования, применять методы математического анализа, методы статистической обработки результатов наблюдений, методы планирования эксперимента ПК-3.1 способность планировать и реализовывать профессиональные мероприятия направленные на мониторинг, контроль качества на предприятиях,	собеседование, тест, контрольная работа, устный опрос	

	Проме	жуточный контроль, 3 семестр	
	П	жуточный контроль, 3 семестр	
		толка	
		исследованиям лженаучного	
		критического отношения к	
		технических решений,	
		нестандартных научно-	
		культуры поиска	
		B19 формирование научного мировоззрения,	
		культуры умственного труда	
		критического мышления,	
		исследовательского и	
		В16 формирование	
		атомной энергетики	
		деятельность в области	
		осуществляющих	
		качества на предприятиях,	
		мониторинг, контроль	
		мероприятия направленные на	
		профессиональные	
		планировать и реализовывать	
		ПК-3.1 способность	
		эксперимента	
		результатов наблюдений, методы планирования	
		статистической обработки	
		анализа, методы	
		методы математического	
		исследования, применять	
		биологические методы	
		физико-химические и медико-	
		современные биофизические,	
		объект и использовать	
		исследование, выбирать	
		обосновывать научное	устный опрос
2.	Ядерные взаимодействия	ПК-1 – способность	тест, контрольная работа,
		толка	
		исследованиям лженаучного	
		технических решений, критического отношения к	
		нестандартных научно-	
		культуры поиска	
		научного мировоззрения,	
		В19 формирование	
		культуры умственного труда	
		критического мышления,	
		исследовательского и	
		атомной энергетики B16 формирование	
		деятельность в области	
		осуществляющих	

8.2. Типовые контрольные задания или иные материалы

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущей и промежуточной аттестации по дисциплине.

Оценочные средства приведены в Приложении «Фонд оценочных средств».

8.2.1. Зачет

- а) типовые вопросы (задания):
- 1. Состав, размеры и форма атомных ядер.
- 2. Сопоставление радиоактивного распада и активации.
- 3. Спин и магнитный момент атомных ядер.
- 4. Масса и энергия связи атомных ядер.
- 5. Уровни энергии возбужденного ядра и их характеристики.
- 6. Виды радиоактивности и законы радиоактивного распада.
- 7. Энергия α-распада и спектры α-частиц.
- 8. Радиоактивные семейства и правила смещения при α-распаде.
- 9. Понятия о механизме и теории α-распада.
- 10.Особенности прохождения α-частиц через вещество.
- 11. Виды и энергия бета распада. Дорожка стабильности.
- 12. Энергетическое распределение электронов при β распаде.
- 13. Основные эффекты взаимодействия заряженных частиц с веществом.
- 14.Особенности прохождения электронов через вещество.
- 15.Вероятности у-переходов и правила отбора.
- 16.Источники у-излучения.
- 17. Основные эффекты взаимодействия у-излучения с веществом.
- 18. Ядерная изомерия.
- 19. Внутренняя конверсия электронов.
- 20.Общий характер взаимодействия у-излучения с веществом.
- 21. Ядерные реакции. Классификация, энергетическая диаграмма.
- 22. Понятие о сечении ядерной реакции и его энергетической зависимости.
- 23. Законы сохранения в ядерных реакциях и их особенности.
- 24. Составное ядро. Гипотеза Н. Бора, каналы реакции.
- 25. Выделение и поглощение энергии в ядерных взаимодействиях. Примеры.
- 26. Упругое рассеяние частиц. Импульсная диаграмма.
- 27. Радиационный захват нейтронов. Значение и особенности реакции.
- 28. Деление ядер. Основные свойства.
- 29. Понятие о теории деления ядер.
- 30. Капельная модель ядра в применении к делению.
- 31.Запаздывающие нейтроны деления ядер.
- 32.Сечения деления ядер.
- 33. Деление ядер спонтанное и вынужденное. Энергия, выделяемая при делении.
- 34. Механизм деления. Энергетический барьер деления.
- 35.Вторичные нейтроны деления ядер.

- 36. Трековые детекторы. Искровые камеры.
- 37. Трековые детекторы. Ядерные фотоэмульсии.
- 38. Трековые детекторы. Пузырьковые камеры.
- 39. Трековые детекторы. Камеры Вильсона.
- 40. Недостатки и достоинства сцинтилляционных детекторов.
- 41. Фотоэлектронные умножители. Конструкция и назначение.
- 42. Сцинтилляционные детекторы, принципы работы.
- 43. Достоинства полупроводниковых детекторов, примеры спектров.
- 44. Принципы работы полупроводниковых детекторов.
- 45.Полупроводниковые детекторы. Требования к материалам.
- 46. Газовые детекторы ионизирующих излучений. Основные требования.
- 47. Ионизационные камеры. Принцип действия, достоинства и недостатки.
- 48.Счетчики Гейгера-Мюллера. Принцип действия, достоинства.
- 49. Пропорциональные счетчики. Принцип действия, достоинства.
- 50.Полупроводниковые детекторы. Требования к материалам.

8.2.2. Tecm

- а) типовые задания (вопросы) образец:
- 1. Из каких частиц состоит атомное ядро? Варианты ответа:
- 1) из протонов и электронов
- 2) из протонов и нейтронов
- 3) из нейтронов и электронов
- 4) из протонов, нейтронов и гамма-квантов
- 2. Какие ядра называются изотопами? Варианты ответа:
- 1) ядра с одинаковым числом протонов
- 2) ядра с одинаковым числом нейтронов
- 3) ядра с одинаковым числом нуклонов
- 4) ядра, имеющие достаточно долгоживущие (метастабильные) энергетические уровни
- 3. Какие факты говорят о существовании сил особой природы так называемых ядерных сил?

Варианты ответа:

- 1) существование ядра
- 2) существования протона
- 3) существование нейтрона
- 4) существования атома
- 4. Как радиус ядра связан с числом нуклонов в нем? Варианты ответа:
- 1) $R = r_0 \cdot A^{1/2}$
- 2) $R = A^{1/4}$

- 3) $R = r_0 \cdot A^{1/3}$
- 4) $R = r_0 + A^{1/3}$
- 5. Как соотносится 1 а.е.м. с 1 МэВ? Варианты ответа:
- 1) 1 a.e.m. = $931,5 \text{ M} \cdot \text{B}$
- 2) 1 a.e.m. = $93.15 \text{ M} \cdot \text{B}$
- 3) 1 a.e.m. = 9315 M_{2} B
- 4) 1 a.e.m. = $9,315 \text{ M} \cdot \text{B}$
- 6. Какая величина называется полной энергией связи атомного ядра? Варианты ответа:
- 1) $\Delta E(A,Z) = [Zm_p (A-Z)m_n + M(A,Z)] \cdot c^2$
- 2) $\Delta E(A,Z) = \left[Zm_p + (A-Z)m_n M(A,Z)\right] \cdot c^2$
- 3) $\Delta E(A,Z) = [M(A,Z) Zm_p (A-Z)m_n] \cdot c^2$
- 4) $\Delta E(A,Z) = \left[Zm_p (A-Z)m_n M(A,Z) \right] \cdot c^2$
- 7. Как в общем виде записывается условие устойчивости ядра (A,Z) по отношению к распаду на части (A_1,Z_1) и (A_2,Z_2) ?

Варианты ответа:

- 1) $M(A,Z) > M(A_1,Z_1) + M(A_2,Z_2)$
- 2) $M(A,Z) < M(A_1,Z_1) + M(A_2,Z_2)$
- 3) $M(A,Z) = M(A_1,Z_1) + M(A_2,Z_2)$
- 4) $\Delta E(A, Z) < \Delta E(A_1, Z_1) + \Delta E(A_2, Z_2)$
- 8. Какая физическая величина называется магнитным моментом? Варианты ответа:
- $1)\,\vec{\mu}=g\cdot\vec{I}$
- $2) \ \vec{\mu} = g \vec{I}$
- $3) \ \vec{\mu} = g + \vec{I}$
- $4) \ \vec{\mu} = g / \vec{I}$
- 9. Кем, когда и как была открыта радиоактивность? Варианты ответа:
- 1) Беккерель в 1896 г. обнаружил, что уран испускает невидимое излучение, способное проникать через черную бумагу и засвечивать фотопластинку
- 2) Ф. и И. Жолио-Кюри в 1934 г. обнаружили, что при распаде некоторых ядер образуются частицы с положительным зарядом
- 3) Э.Резерфорд в 1911 г. при изучении рассеяния альфа-частиц
- 4) П. Виллард в 1900 г. при открытии гамма-лучей при изучении распада урана
- 10. Как записывается основной закон радиоактивного распада в интегральной форме?

Варианты ответа:

- 1) $N(t) = N_0 \cdot e^{-\lambda t}$
- $2) N(t) = \int e^{-\lambda t} dt$
- 3) $N(t) = N_0 \cdot (1 e^{-\lambda t})$
- 4) $N(t) = \int (1 e^{-\lambda t}) dt$
- 11. Какая величина называется активностью? Варианты ответа:
- 1) активность выражается числом распадов в образце в 1 секунду
- 2) активность выражается энергией, выделяющейся в образце при радиоактивном распаде за 1 секунду
- 3) активность выражается числом распадов в образце за период полураспада
- 4) активность выражается энергией, выделяющейся в образце при радиоактивном распаде за период полураспада
- 12. Какие единицы используются для выражения активности в системе СИ и на практике?

Варианты ответа:

- 1) в системе СИ: 1 Бк = 1 распаду в секунду; на практике: 1 $Ku = 3.7 \cdot 10^{10}$ Бк
- 2) в системе СИ: 1 Ku = 1 распаду в секунду; на практике: 1 $\text{Бк} = 3.7 \cdot 10^{10} \text{ Ku}$
- 3) в системе СИ: 1 Бк = 1 распаду в секунду; на практике: 1 $Ku = 10^{10}$ Бк
- 4) в системе СИ: 1 Ku = 1 распаду в секунду; на практике: 1 $EK = 10^{10}$ EK
- 13. Что называется вековым равновесием? Варианты ответа:
- 1) масс покоя ядра не меняется веками
- 2) активность радионуклида не меняется веками
- 3) энергии связи двух радионуклидов равны
- 4) радиоактивное равновесие, поддерживающееся веками
- 14. Какова природа и основные свойства альфа-частиц? Варианты ответа:
- 1) α -частица это частица с нейтральным электрическим зарядом и массой $\to 0$.
- 2) α -частица это частица с зарядом = е и массой = 2 а.е.м.
- 3) α-частица это неустойчивая частица с отрицательным электрическим зарядом.
- 4) α -частица это ядро ⁴He с зарядом Z=2 и общим числом нуклонов A=4
- 15. Какие встречаются разновидности энергетических спектров альфа-частиц? Варианты ответа:
- 1) Линейчатые и непрерывные.
- 2) Простые, с тонкой структурой и с длиннопробежными α -частицами.
- 3) Альфа-спектр имеет форму кривой Максвелла
- 4) Альфа-спектр имеет форму кривой Гаусса
 - б) критерии оценивания компетенций (результатов):

Тест состоит содержит 20 вопросов. Оценивается количество выполненных тестовых заданий.

в) описание шкалы оценивания:

Максимальная сумма баллов за тест – 20 баллов.

Если студент ответил верно менее, чем на 12 вопросов и если отсутствовал по неуважительной причине, он имеет возможность пересдать тест с понижающим коэффициентом 0,8. То есть максимальное количество набранных баллов 16.

При отсутствии по уважительной причине понижающий коэффициент не вводиться.

8.2.3. Собеседование

- а) типовые задания (вопросы) образец:
- 1. Привести примеры применения дискретных распределений в ядерной физике.
- 2. Что называется периодом полураспада?
- 3. Какие ядра называются радиоактивными?
- 4. Физический смысл области устойчивости стабильных ядер и способы распада нестабильных ядер, лежащих выше и ниже области устойчивости.
- 5. Закономерности радиоактивного распада.
- 6. Дать определение периода полураспада и показать методику определения периода полураспада по результатам измерений уменьшения активности образца во времени.
- 7. Что показывают кривые интегрального и дифференциального распределений α–частии?
- 8. Виды потерь энергии α-частиц при прохождении через вещество и их вклад при различных энергиях α-частиц.
- 9. Виды β-распада.
- 10.Виды потерь энергии β-частиц в веществе.
- 11. Процессы взаимодействия у-квантов с веществом.
- 12. Найти толщину слоя поглотителя половинного ослабления потока ү-квантов для одного из веществ (по заданию преподавателя).
 - б) критерии оценивания компетенций (результатов):
 - полнота ответов на вопросы;
 - умение пояснить связь между различными физическими величинами;
 - в) описание шкалы оценивания:

Максимальная сумма баллов за собеседование – 20 баллов.

Если студент набрал за собеседование меньше 12 баллов и если отсутствовал по неуважительной причине, он имеет возможность пересдать собеседование с понижающим коэффициентом 0,8. То есть максимальное количество набранных баллов 16.

При отсутствии по уважительной причине понижающий коэффициент не вводиться.

8.2.4. Контрольная работа

а) типовые задания (вопросы) - образец:

Вариант 1

- 1. Вычислить удельные активности радионуклидов 24 Na и 238 U, периоды полураспада которых равны 15 ч. и 4,5 · 10^9 лет, соответственно.
- 2. Вычислить энергию, которую необходимо затратить для разделения ядра 20 Ne на две α -частицы и ядро 12 C, если энергии связи на один нуклон в этих ядрах равны 8.03, 7.07 и 7.68 МэВ, соответственно.

Вариант 2

- 1. Радиоизотоп ($T_{1/2}$ = 14.3 сут.) образуется с постоянной скоростью $q=2.7\cdot 10^{10}$ ядер/с. Через сколько времени после начала образования его активность станет равной $1.0\cdot 10^9$ Бк.
- 2. Вычислить в а.е.м. массу ⁸Li, если его энергия связи равна 41.3 МэВ.
 - б) критерии оценивания компетенций (результатов):

Задача 1 оценивается в 10 баллов, если правильно написаны формулы, найдены правильные значения из таблиц данный, найден правильный ответ и правильно написаны единицы измерения.

Задача 2 оценивается в 10 баллов, если правильно написаны формулы, найдены правильные значения из таблиц данный, найден правильный ответ и правильно написаны единицы измерения.

в) описание шкалы оценивания:

Максимальная сумма баллов за контрольную работу- 20 баллов.

Если студент набрал за контрольную работу меньше 12 баллов и если отсутствовал по неуважительной причине во время контрольной работы, студент имеет возможность переписать её с понижающим коэффициентом 0,8. То есть максимальное количество набранных баллов 16.

При отсутствии по уважительной причине понижающий коэффициент не вводиться.

8.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Рейтинговая оценка знаний является интегральным показателем качества теоретических и практических знаний и навыков студентов по дисциплине и складывается из оценок, полученных в ходе текущего контроля и промежуточной аттестации.

Текущий контроль в семестре проводится с целью обеспечения своевременной обратной связи, для коррекции обучения, активизации самостоятельной работы студентов.

Промежуточная аттестация предназначена для объективного подтверждения и оценивания достигнутых результатов обучения после завершения изучения дисциплины.

Текущий контроль осуществляется два раза в семестр: контрольная точка № 1 (КТ № 1) и контрольная точка № 2 (КТ № 2).

Результаты текущего контроля и промежуточной аттестации подводятся по шкале балльно-рейтинговой системы.

Вид контроля	Этап рейтинговой системы	Балл	
	Оценочное средство	Минимум	Максимум
Текущий	Контрольная точка № 1		
·	Собеседование	12	20
	Защита лабораторных работ		
	Контрольная точка № 2		
	Контрольная работа	12	20
	Тест	12	20
Промежуточный	Зачет		
	Зачетный билет		40
ИТ	60	100	

Определение бонусов и штрафов:

Бонусы: поощрительные баллы студент получает к своему рейтингу в конце семестра за активную и регулярную работу на занятиях.

По Положению бонус (премиальные баллы) не может превышать 5 баллов.

Штрафы: за несвоевременное написание контрольной работы, теста, прохождение собеседования максимальная оценка может быть снижена на 20%

Процедура оценивания знаний, умений, владений по дисциплине включает учет успешности по всем видам заявленных оценочных средств.

Устный опрос проводится на каждом лекционном занятии и затрагивает тематику прошедшего лекционного материала. Применяется групповое оценивание ответа или оценивание преподавателем.

По окончании освоения дисциплины проводится промежуточная аттестация в виде зачета, что позволяет оценить совокупность приобретенных в процессе обучения компетенций. При выставлении итоговой оценки применяется балльнорейтинговая система оценки результатов обучения.

Зачет предназначен для оценки работы обучающегося в течение всего срока изучения дисциплины и призван выявить уровень, прочность и систематичность полученных обучающимся теоретических знаний и умений приводить примеры практического использования знаний (например, применять их в решении практических задач), приобретения навыков самостоятельной работы, развития творческого мышления.

Оценка сформированности компетенций на зачете для тех обучающихся, которые пропускали занятия и не участвовали в проверке компетенций во время изучения дисциплины, проводится после индивидуального собеседования с преподавателем по пропущенным или не усвоенным обучающимся темам с последующей оценкой самостоятельно усвоенных знаний на зачете.

Итоговый балл по дисциплине	Оценка по 5-балльной системе	Критерии оценки
90 - 100	Отлично	Исчерпывающий ответ на вопросы билета, правильное решение
75 – 89	Хорошо	задачи. При ответе на вопросы были допущены некоторые неточности в определениях, в выводах формул, правильно сформулирован подход к решению задачи.
60 – 74	Удовлетворительно	Не дан ответ на один из вопросов, или не сформулирован даже подход к решению задачи, или допущены грубые ошибки, непонимание некоторых разделов курса при ответе на теоретические вопросы при правильно решенной задаче.
<60	Неудовлетворительно	Нет правильного ответа ни на один теоретический вопрос и не решена задача или нет ответа на один из вопросов зачетного билета и на дополнительные вопросы по дисциплине и не сформулирован даже подход к решению задачи.

9. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) основная учебная литература:

1. Мухин К.Н. Экспериментальная ядерная физика. 7-е изд. – СПб.: Из-во «Лань», кн. 1 и 2, 2009. [Электронный ресурс] http://e.lanbook.com/

- 2. Ядерная физика в Интернете. Проект кафедры общей ядерной физики физического факультета МГУ осуществляется при поддержке <u>НИИЯФ МГУ</u>. [Электронный ресурс] http://nuclphys.sinp.msu.ru/
- 3. И.Н.Бекман. Ядерная физика. Учебное пособие. М. 2010. [Электронный pecypc] http://profbeckman.narod.ru/YadFiz.htm

б) дополнительная учебная литература:

- 1. Холев С.Р. Основы ядерной физики. Учебное пособие по курсу «Ядерная физика». Обнинск, ОИАТЭ, 2006.
- 2. Иродов И.Е. Сборник задач по атомной и ядерной физике. 7-е изд. М.: Энергоатомиздат, 1984.
- 3. Абрамов А.И., Пустынский Л.Н., Романцов ВП. Лабораторный практикум по курсу «Ядерная и нейтронная физика». Часть 1. Обнинск, ОИАТЭ, 1997.
- 4. Абрамов А.И. История ядерной физики. Учебное пособие по курсу «Ядерная физика». Обнинск, ОИАТЭ, 2006.
- 5. Абрамов А.И. Деление атомных атом. Обнинск, ОИАТЭ, 1991.
- 6. Абрамов А.И. Фотоядерные взаимодействия. Обнинск, ОИАТЭ, 1995.
- 7. Абрамов А.И. Модели атомных ядер. Обнинск, ОИАТЭ, 1996.
- 8. Абрамов А.И. Радиоактивный распад. Обнинск, ОИАТЭ, 1997.
- 9. Абрамов А.И. Альфа распад. Обнинск, ОИАТЭ, 1998.
- 10. Абрамов А.И. Бета распад. Обнинск, ОИАТЭ, 1998.
- 11. Пустынский Л.Н. Статистические свойства и оценка параметров радиоактивного распада. Обнинск, ОИАТЭ, 1997.

10. Перечень ресурсов* информационно-телекоммуникационной сети «Интернет» (далее - сеть «Интернет»), необходимых для освоения дисциплины

- 1. Ядерная физика в Интернете. Проект кафедры общей ядерной физики физического факультета МГУ осуществляется при поддержке <u>НИИЯФ МГУ</u>. [Электронный ресурс] http://nuclphys.sinp.msu.ru/
- 2. И.Н.Бекман. Ядерная физика. Учебное пособие. М. 2010. [Электронный ресурс] http://profbeckman.narod.ru/YadFiz.htm

11. Методические указания для обучающихся по освоению дисциплины

Вид учебных	Организация деятельности студента			
занятий				
Лекция	Написание конспекта лекций: кратко, схематично,			
	последовательно фиксировать основные положения, выводы,			
	формулировки, обобщения; помечать важные мысли, выделять			
	ключевые слова, термины. Проверка терминов, понятий с			
	помощью энциклопедий, словарей, справочников с			
	выписыванием толкований в тетрадь. Обозначить вопросы,			
	термины, материал, который вызывает трудности, пометить и			
	попытаться найти ответ в рекомендуемой литературе. Если			

	самостоятельно не удается разобраться в материале,			
	необходимо сформулировать вопрос и задать преподавателю на			
	консультации, на практическом занятии. Уделить внимание			
	следующим понятиям: характеристики ядра, размер, форма,			
	масса, заряд, энергия связи ядра, радиоактивный распад,			
	основные характеристики распада; прохождение заряженных			
	частиц через вещество; прохождение гамма-квантов через			
	вещество; ядерные реакции, законы сохранения в ядерных			
	реакциях, деление тяжелых ядер, энергия деления.			
Контрольная	При подготовке к контрольной работе необходимо сначала			
работа	прочитать теорию и изучить примеры по каждой теме. Решая			
	конкретную задачу, предварительно следует понять, что			
	требуется от Вас в данном случае, какой теоретический			
	материал нужно использовать, наметить общую схему решения.			
Собеседование	Работа с конспектом лекций, подготовка ответов к контрольным			
	вопросам и др.			
Тест	Работа с конспектом лекций, повторение основных понятий и			
	формул.			
Подготовка к	При подготовке к зачету необходимо ориентироваться на			
зачету	конспекты лекций, рекомендуемую литературу и интернет			
-	источники.			

12. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости)

12.1. Перечень информационных технологий

- Применение средств мультимедиа в образовательном процессе (презентации, видео);
- Проверка домашних заданий и консультирование посредством электронной почты.

12.2. Перечень программного обеспечения

- Программы, демонстрации видео материалов (проигрыватель «Windows Media Player»).
- Программы для демонстрации и создания презентаций («Microsoft Power Point»).

12.3. Перечень информационных справочных систем

Доступ к электронным библиотечным ресурсам и электронной библиотечной системе (ЭБС) осуществляется посредством специальных разделов на официальном сайте ИАТЭ НИЯУ МИФИ. Обеспечен доступ к электронным каталогам библиотеки ИАТЭ НИЯУ МИФИ, а также электронным

образовательным ресурсам (ЭИОС), сформированным на основании прямых договоров с правообладателями учебной и учебно-методической литературы, методических пособий:

- 1) Информационные ресурсы Сети Консультант Плюс, www.consultant.ru (информация нормативно-правового характера на основе современных компьютерных и телекоммуникационных технологий);
- 2) Электронно-библиотечная система НИЯУ МИФИ, http://libcatalog.mephi.ru/cgi/irbis64r/cgiirbis_64.exe7C21COM=F&I21DBN=BOOK;
- 3) ЭБС «Издательства Лань», https://e.lanbook.com/;
- 4) Электронно-библиотечная система BOOK.ru, www.book.ru;
- 5) Базы данных «Электронно-библиотечная система elibrary» (ЭБС elibrary);
- 6) Базовая версия ЭБС IPRbooks, www.iprbooks.ru;
- 7) Базы данных «Электронная библиотека технического ВУЗа» www.studentlibrary.ru;
- 8) Электронно-библиотечная система «Айбукс.py/ibooks.ru»,
- 9) http://ibooks.ru/home.php?routine=bookshelf
- 10) Электронно-библиотечная система «ЭБС ЮРАЙТ», http://urait.ru/.

13. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

- 1. Минимально необходимый для реализации дисциплины перечень материально-технического обеспечения включает в себя:- аудитория для лекционных занятий на 30 посадочных мест с ноутбуком, проектором и экраном;
- 2. Библиотечный фонд института.

14. Иные сведения и (или) материалы

14.1. Перечень образовательных технологий, используемых при осуществлении образовательного процесса по дисциплине

Весь лекционный материал представлен в виде презентаций на основе современных мультимедийных средств.

№ пп	Наименование темы дисциплины	Вид занятий (лекция, семинары, практические занятия)	Количество ак. ч.	Наименование активных и интерактивных форм проведения занятий
----------------	------------------------------------	--	----------------------	---

1	Основные характеристики атомных ядер	Практические занятия	2	Собеседование
2	Радиоактивный распад	Практические занятия	1	Собеседование
3	Альфа-распад	Практические занятия	1	Собеседование
4	Бета-распад	Практические занятия	1	Собеседование
5	Гамма-излучение ядер	Практические занятия	1	Собеседование
6	Бета-распад	Лекция	2	Лекция – пресс-конференция
7	Активация материалов	Лекция	2	Лекция – пресс-конференция

14.2. Формы организации самостоятельной работы обучающихся (темы, выносимые для самостоятельного изучения; вопросы для самоконтроля; типовые задания для самопроверки

В самостоятельную работу входит решение задач и самостоятельное изучение материала по следующим темам:

- 1. Устойчивость ядер, основные особенности таблицы нуклидов;
- 2. Модели атомных ядер, области их применения;
- 3. Природа ядерных сил;
- 4. Общие характеристики взаимодействия радиоактивного излучения с веществом;
- 5. Взаимодействие гамма-квантов с атомными ядрами;
- 6. Механизм внутренней конверсии и сопровождающие её излучения;
- 7. Опыты по доказательству существования нейтрино;
- 8. Физика нейтрино;
- 9. Детекторы частиц;
- 10. Несохранение четности при бета-распаде;
- 11. Активация материалов;
- 12.Открытие процесса деления ядер;
- 13.Открытие нейтронов и их основные свойства;
- 14. Прохождение нейтронов через вещество.

Особенности освоения Модуля инвалидами и лицами с ограниченными возможностями

Организация образовательного процесса лиц с инвалидностью и ограниченными возможностями здоровья (далее — OB3), помимо указанных в разделе «Общие сведения о программе», строится в соответствие с: - требования к организации образовательного процесса для обучения инвалидов и лиц с OB3 в профессиональных образовательных организациях, в том числе оснащению образовательного процесса (письмо Минобрнауки России от 18 марта 2014 г. № 06-281); - методическими рекомендациями по организации образовательного процесса для обучения инвалидов и лиц с OB3 в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса (письмо Минобрнауки России от 16 апреля 2014 г., № 05-785); - индивидуальной программой реабилитации инвалида (ИПР).

Особенности преподавания Модуля для инвалидов и лиц с ограниченными возможностями здоровья в соответствии с нозологией

Для лиц с ограниченными возможностями здоровья по зрению

- 1. Специальные условия, обеспечиваемые в процессе преподавания
 - предоставление образовательного контента в текстовом электронном формате, позволяющем переводить плоскопечатную информацию в аудиальную форму;
 - возможность использовать индивидуальные устройства и средства, позволяющие адаптировать материалы, осуществлять приём и передачу информации с учетом индивидуальных особенностей и состояния здоровья студента;
 - предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале;
 - использование чёткого и увеличенного по размеру шрифта и графических объектов в мультимедийных презентациях;
 - использование инструментов «лупа», «прожектор» при работе с интерактивной доской;
 - озвучивание визуальной информации, представленной обучающимся в ходе занятий;
 - обеспечение раздаточным материалом, дублирующим информацию, выводимую на экран;
 - наличие подписей и описания у всех используемых в процессе обучения рисунков и иных графических объектов, что даёт возможность перевести письменный текст в аудиальный,
 - обеспечение особого речевого режима преподавания: лекции читаются громко, разборчиво, отчётливо, с паузами между смысловыми блоками информации, обеспечивается интонирование, повторение, акцентирование, профилактика рассеивания внимания;

- минимизация внешнего шума и обеспечение спокойной аудиальной обстановки;
- возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, в виде пометок в заранее подготовленном тексте).
- увеличение доли методов социальной стимуляции (обращение внимания, аппеляция к ограничениям по времени, контактные виды работ, групповые задания и др.) на практических и лабораторных занятиях;
- минимизирование заданий, требующих активное использование зрительной памяти и зрительного внимания;
- применение поэтапной системы контроля, более частый контроль выполнения заданий для самостоятельной работы

2. Адаптационные и вспомогательные технологии, используемые в процессе преподавания лисциплины

Технологии озвучивания текста: обеспечиваются применением компьютерных программ, предоставляющих возможность озвучивать плоскопечатную информацию (программа «синтезатор речи», «программа экранного доступа для чтения с экрана», «программа оптического распознавания текста»). Основные функции программ речевого доступа: озвучивание информации, вводимой с клавиатуры; автоматическое озвучивание текстовой информации, выводимой на экран другими программами; чтение фрагментов экрана по командам пользователя; отслеживание изменений на экране и оповещение о них пользователя.

Технологии здоровьесбережения: обеспечиваются применением интерактивных досок с функцией «прожектора» и «лупы»; соблюдением требований к экранному тексту (больший размер элементов управления; чёткий курсор; чёткие границы между элементами; возможность работы в ограниченной области экрана; преимущество к использованию модальных окон, позволяющих переходить друг к другу без закрытия предыдущего. Во время проведения занятия учитывается допустимая продолжительность непрерывной зрительной нагрузки

Технологии дистанционного обучения: обеспечиваются наличием корпоративного образовательного портала. Образовательный портал предоставляет студентам с ОВЗ и инвалидностью возможность выполнять различные операции: получать варианты заданий и отправлять выполненные; узнавать результаты выполненных работ и знакомиться с рецензией на них; получать различную справочную информацию, касающуюся учебного процесса и посылать сообщения преподавателю и любому из администраторов; отправлять материалы, относящиеся к дисциплинам текущего семестра, а также отчеты по практике и другие файлы; иметь дистанционный доступ к

информационным ресурсам: учебным и учебно-методическим материалам, расписанию занятий и т.д.; задавать вопросы преподавателю по его учебной дисциплине, получать конкретную информацию по тем или иным учебным и/или организационным вопросам, проходить тестирование, выполняя задания на выбор правильных ответов, установление соответствия, заполнение пропусков, установление истинности или ложности, а также давать развёрнутые ответы на поставленные вопросы. Для студентов, не имеющих возможности посещать очные занятия, осуществляются онлайн-консультирование. Консультации предполагают дополнительный разбор учебного материала и восполнение пробелов в знаниях студентов.

Технологии индивидуализации обучения: обеспечиваются возможностью применения индивидуальных устройств и средств, персональный компьютер (ПК), учётом темпов работы и утомляемости, предоставлением дополнительных консультаций.

3. Адаптация процедуры проведения промежуточной аттестации

В ходе проведения промежуточной аттестации предусмотрено:

- предъявление обучающимся печатных и (или) электронных материалов в формах, адаптированных к ограничениям их здоровья;
- возможность пользоваться индивидуальными устройствами и средствами, позволяющими адаптировать материалы, осуществлять приём и передачу информации с учетом их индивидуальных особенностей;
- увеличение продолжительности проведения аттестации; возможность присутствия ассистента и оказания им необходимой помощи (занять рабочее место, передвигаться, прочитать и оформить задание, общаться с преподавателем).

Для лиц с ограниченными возможностями здоровья, имеющих нарушения опорнодвигательного аппарата (маломобильные студенты, студенты, имеющие трудности передвижения и патологию верхних конечностей)

- 1. Специальные условия, обеспечиваемые в процессе преподавания дисциплины
- возможность использовать специальное программное обеспечение и специальное оборудование, предоставляемое по линии ФСС и позволяющее компенсировать двигательный дефект (коляски, ходунки, трости и др.);
- предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале;
 - применение дополнительных средств активизации процессов запоминания и повторения;
 - опора на определенные и точные понятия;
 - использование для иллюстрации конкретных примеров;
 - применение вопросов для мониторинга понимания;
 - разделение изучаемого материала на небольшие логические блоки;
- увеличение доли конкретного материала и соблюдение принципа от простого к сложному при объяснении материала;
- наличие чёткой системы и алгоритма организации самостоятельных работ и проверки заданий с обязательной корректировкой и комментариями;
- увеличение доли методов социальной стимуляции (обращение внимания, апелляция к ограничениям по времени, контактные виды работ, групповые задания др.);
 - обеспечение беспрепятственного доступа в помещения, а также пребывания них;
- наличие возможности использовать индивидуальные устройства и средства, позволяющие обеспечить реализацию эргономических принципов и комфортное пребывание на месте в течение всего периода учёбы (подставки, специальные подушки и др.).
- 2. Адаптационные и вспомогательные технологии, используемые в процессе преподавания дисциплины

Технологии здоровьесбережения: обеспечиваются соблюдением ортопедического режима (использование ходунков, инвалидных колясок, трости), регулярной сменой положения тела в целях нормализации тонуса мышц спины, профилактикой утомляемости, соблюдение эргономического режима и обеспечением архитектурной доступности среды (окружающее пространство, расположение учебного инвентаря и оборудования аудиторий обеспечивают

возможность доступа в помещении и комфортного нахождения в нём).

ИКТ технологии: обеспечены возможностью применения ПК и специализированных индивидуальных компьютерных средств (специальные клавиатуры, мыши, компьютерная программа «виртуальная клавиатура» и др.).

Технологии индивидуализации обучения: обеспечиваются возможностью применения индивидуальных устройств и средств, ПК, учётом темпов работы и утомляемости, предоставлением дополнительных консультаций.

3. Адаптация процедуры проведения промежуточной аттестации

В ходе проведения промежуточной аттестации предусмотрено:

- предъявление обучающимся печатных и (или) электронных материалов в формах, адаптированных к ограничениям их здоровья;
- возможность пользоваться индивидуальными устройствами и средствами, позволяющими адаптировать материалы, осуществлять приём и передачу информации с учетом их индивидуальных особенностей;
- увеличение продолжительности проведения аттестации; возможность присутствия ассистента и оказания им необходимой помощи (занять рабочее место, передвигаться, прочитать и оформить задание, общаться с преподавателем).

Для лиц с ограниченными возможностями здоровья по слуху

- 1. Специальные условия, обеспечиваемые в процессе преподавания дисциплины
- предоставление образовательного контента в текстовом электронном формате, позволяющем переводить аудиальную форму лекции в плоскопечатную информацию;
- наличие возможности использовать индивидуальные звукоусиливающие устройства и сурдотехнические средства, позволяющие осуществлять приём и передачу информации; осуществлять взаимообратный перевод текстовых и аудиофайлов (блокнот для речевого ввода), а также запись и воспроизведение зрительной информации.
- наличие системы заданий, обеспечивающих систематизацию вербального материала, его схематизацию, перевод в таблицы, схемы, опорные тексты, глоссарий;
- наличие наглядного сопровождения изучаемого материала (структурно-логические схемы, таблицы, графики, концентрирующие и обобщающие информацию, опорные конспекты, раздаточный материал);
- наличие чёткой системы и алгоритма организации самостоятельных работ и проверки заданий с обязательной корректировкой и комментариями;
- обеспечение практики опережающего чтения, когда студенты заранее знакомятся с

материалом и выделяют незнакомые и непонятные слова и фрагменты;

- особый речевой режим работы (отказ от длинных фраз и сложных предложений, хорошая артикуляция; четкость изложения, отсутствие лишних слов; повторение фраз без изменения слов и порядка их следования; обеспечение зрительного контакта во время говорения и чуть более медленного темпа речи, использование естественных жестов и мимики);
- чёткое соблюдение алгоритма занятия и заданий для самостоятельной работы (называние темы, постановка цели, сообщение и запись плана, выделение основных понятий и методов их изучения, указание видов деятельности студентов и способов проверки усвоения материала, словарная работа);
- соблюдение требований к предъявляемым учебным текстам (разбивка текста на части; выделение опорных смысловых пунктов; использование наглядных средств);
- минимизация внешних шумов;
- предоставление возможности соотносить вербальный и графический материал; комплексное использование письменных и устных средств коммуникации при работе в группе;
- сочетание на занятиях всех видов речевой деятельности (говорения, слушания, чтения, письма, зрительного восприятия с лица говорящего)
- 2. Адаптационные и вспомогательные технологии, используемые в процессе преподавания дисциплины

Технологии активизации речевой деятельности: обеспечиваются соблюдением режима слухозрительного восприятия речи, использованием различных видов коммуникации; активизацией всех сторон и видов словесной речи (устная, письменная).

Технологии индивидуализации обучения: обеспечиваются возможностью применения индивидуальных устройств и средств, ПК, учётом темпов работы и утомляемости, предоставлением дополнительных консультаций.

Технологии визуализации: обеспечиваются дублированием аудиальной информации зрительной, применением средств программного и методического обеспечения наглядности обучения (мультимедийная среда для изложения и наглядного отображения информации, интерактивные доски).

- 3. Адаптация процедуры проведения промежуточной аттестации
- В ходе проведения промежуточной аттестации предусмотрено:
- предъявление обучающимся печатных и (или) электронных материалов в формах, адаптированных к ограничениям их здоровья;
- возможность пользоваться индивидуальными устройствами и средствами, позволяющими

адаптировать материалы, осуществлять приём и передачу информации с учетом их индивидуальных особенностей

- увеличение продолжительности проведения аттестации;
- возможность присутствия ассистента и оказания им необходимой помощи (занять рабочее место, передвигаться, прочитать и оформить задание, общаться с преподавателем).

Для лиц с нарушениями речи

- 1. Специальные условия, обеспечиваемые в процессе преподавания дисциплины
- наличие возможности использовать индивидуальные устройства и средства, позволяющие осуществлять приём и передачу информации;
- наличие системы заданий, обеспечивающих систематизацию вербального материала, его схематизацию, перевод в таблицы, схемы, опорные тексты, глоссарий;
- наличие наглядного сопровождения изучаемого материала;
- наличие чёткой системы и алгоритма организации самостоятельных работ и проверки заданий с обязательной корректировкой и комментариями;
- обеспечение практики опережающего чтения, когда студенты заранее знакомятся с материалом и выделяют незнакомые и непонятные слова и фрагменты;
- предоставление возможности соотносить вербальный и графический материал; комплексное использование письменных и устных средств коммуникации при работе в группе;
- сочетание на занятиях всех видов речевой деятельности (говорения, слушания, чтения, письма, зрительного восприятия с лица говорящего).
- 2. Адаптационные и вспомогательные технологии, используемые в процессе преподавания дисциплины

Технологии активизации речевой деятельности: обеспечиваются соблюдением режима слухозрительного восприятия речи, использованием различных видов коммуникации; активизацией всех сторон и видов словесной речи (устная, письменная).

Технологии индивидуализации обучения: обеспечиваются возможностью применения индивидуальных устройств и средств, ПК, учётом темпов работы и утомляемости, предоставлением дополнительных консультаций.

Технологии визуализации: обеспечиваются дублированием аудиальной информации зрительной, применением средств программного и методического обеспечения наглядности обучения (мультимедийная среда для изложения и наглядного отображения информации, интерактивные доски).

3. Адаптация процедуры проведения промежуточной аттестации

В ходе проведения промежуточной аттестации предусмотрено:

- предъявление обучающимся печатных и (или) электронных материалов в формах, адаптированных к ограничениям их здоровья;
- возможность пользоваться индивидуальными устройствами и средствами, позволяющими адаптировать материалы, осуществлять приём и передачу информации с учетом их индивидуальных особенностей увеличение продолжительности проведения аттестации;
- возможность присутствия ассистента и оказания им необходимой помощи (занять рабочее место, передвигаться, прочитать и оформить задание, общаться с преподавателем).

Для лиц с соматическими заболеваниями (заболевания эндокринной, центральной нервной и сердечно-сосудистой систем, онкологические заболевания)

- 1. Специальные условия, обеспечиваемые в процессе преподавания дисциплины
- предоставление образовательного контента в текстовом электронном формате;
- возможность использовать индивидуальные устройства и средства, позволяющие адаптировать материалы, осуществлять приём и передачу информации с учетом индивидуальных особенностей и состояния здоровья студента;
- предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале;
- возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, в виде пометок в заранее подготовленном тексте).
- применение поэтапной системы контроля, более частый контроль выполнения заданий для самостоятельной работы,
- стимулирование выработки у студентов навыков самоорганизации и самоконтроля;
- наличие пауз для отдыха и смены видов деятельности по ходу занятия.

2. Адаптационные и вспомогательные технологии, используемые в процессе преподавания дисциплины

Технологии активизации интеллектуальной деятельности: обеспечиваются средствами программного и методического обеспечения образовательного процесса, увеличивающие информационную ценность материалов, стимулирующие активность студентов в переработке информации.

Технологии здоровьесбережения: обеспечиваются чередованием режима труда и отдыха, соблюдением эргономических и гигиенических требований к условиям умственного труда и продолжительности непрерывной нагрузки.

Технологии индивидуализации обучения: обеспечиваются возможностью применения индивидуальных устройств и средств, ПК, учётом темпов работы и утомляемости, предоставлением дополнительных консультаций.

3. Адаптация процедуры проведения промежуточной аттестации

В ходе проведения промежуточной аттестации предусмотрено:

- предъявление обучающимся печатных и (или) электронных материалов в формах, адаптированных к ограничениям их здоровья;
- возможность пользоваться индивидуальными устройствами и средствами, позволяющими адаптировать материалы, осуществлять приём и передачу информации с учетом их индивидуальных особенностей увеличение продолжительности проведения аттестации;
- возможность присутствия ассистента и оказания им необходимой помощи (занять рабочее место, передвигаться, прочитать и оформить задание, общаться с преподавателем).